Learn About Us
- Central Florida Foot and Ankle Center
- Winter Haven, Lakeland, Davenport, Bartow, FL, United States
- We offer the latest technology in diagnostic studies, our office is the only one in Polk County to offer PSSD testing for peripheral nerve problems.
Tuesday, August 7, 2018
Tenex Plantar Fascia Release and Amniox Injection with Dr. Wellens
Central Florida Foot & Ankle Center, LLC
101 6th Street N.W.
Winter Haven, FL 33881
Phone: 863-299-4551
http://www.FLFootandAnkle.com
Thursday, November 9, 2017
Tarsal Tunnel Surgery Testimony with Dr. Wellens
Central Florida Foot & Ankle Center, LLC101 6th Street N.W.Winter Haven, FL 33881Phone: 863-299-4551http://www.FLFootandAnkle.com
Thursday, March 10, 2016
Regenerative Treatment for Chronic Plantar Fasciitis using an Amniotic M...
Central Florida Foot & Ankle Center, LLC101 6th Street N.W.Winter Haven, FL 33881Phone: 863-299-4551http://www.FLFootandAnkle.com
Thursday, January 7, 2016
Olympic Track Star Marlena Wesh's patient testimony after Achilles Tendo...
Central Florida Foot & Ankle Center, LLC101 6th Street N.W.Winter Haven, FL 33881Phone: 863-299-4551http://www.FLFootandAnkle.com
Monday, November 16, 2015
2 month Post-Op Patient Testimony after Achilles Tendon Surgery with Dr....
Central Florida Foot & Ankle Center, LLC101 6th Street N.W.Winter Haven, FL 33881Phone: 863-299-4551http://www.FLFootandAnkle.com
Friday, October 23, 2015
Amniox Regenerative Services for Achilles Tendinitis with Dr. Wellens
Central Florida Foot & Ankle Center, LLC101 6th Street N.W.Winter Haven, FL 33881Phone: 863-299-4551http://www.FLFootandAnkle.com
Thursday, September 3, 2015
Post-Op Patient Testimony after Posterior Tibal Tendon Tear with Dr Wel...
Central Florida Foot and Ankle Center, LLC.101 6TH St. NW. Winter Haven, Fl. 33881 863-299-4551http://www.FLFootandAnkle.com
Thursday, May 17, 2012
Darren McFadden’s Lisfranc Injury
Central Florida Foot & Ankle Center, LLC
101 6th Street N.W.
Winter Haven, FL 33881
Phone: 863-299-4551
www.FLFootandAnkle.com
Monday, April 16, 2012
Walk This Way – Steven Tyler’s Bum Feet
Central Florida Foot & Ankle Center, LLC
101 6th Street N.W.
Winter Haven, FL 33881
Phone: 863-299-4551
www.FLFootandAnkle.com
Monday, March 5, 2012
Staying Ahead of Athlete’s Foot
Athlete’s foot, or tinea pedis, is a fungal infection of the foot that can cause burning and itching, and may lead to cracks in the skin, scaling of the skin, or blisters. It is most commonly caused by the fungus trychophyton rubrum, a ubiquitous species that thrives in warm, moist environments. This can often include a shoe, pool decks, and locker rooms.
Tuesday, January 3, 2012
Diagnosis and Treatment of Acute Compartment Syndrome
Central Florida Foot & Ankle Center, LLC
101 6th Street N.W. Winter Haven, FL 33881
Phone: 863-299-4551
www.FLFootandAnkle.com
Monday, November 14, 2011
Equinus
Central Florida Foot & Ankle Center, LLC
101 6th Street N.W.
Winter Haven, FL 33881
Phone: 863-299-4551
www.FLFootandAnkle.com
Wednesday, September 28, 2011
Fractures of the Anterior Process
Central Florida Foot & Ankle Center, LLC
101 6th Street N.W.
Winter Haven, FL 33881
Phone: 863-299-4551
www.FLFootandAnkle.com
Friday, July 22, 2011
Paronychia
When an ingrown toenail becomes infected, it is referred to as a paronychia. This happens due to the nail literally digging into the skin, causing a breakdown in the soft tissue, which allows bacteria to penetrate the natural skin barrier. The organism that is usually responsible for the infection is a staphylococcus species.
Paronychia will appear as a small, localized area of redness that may spread up the toe. It is generally quite painful, and there is usually a fair amount of pus and drainage from the site. In patients that are immunocompromised, such as diabetics or patients on long-term steroid regimens, a paronychia can advance to a more complicated infection of the soft tissues. These should be dealt with rapidly and aggressively by a doctor.
Treatment for paronychia includes incision and drainage of the infection site, which will help to relieve pain as well as remove much of the infection. A bandage is applied, usually with a topical antibiotic, and oral antibiotics may be used as well. Augmentin is a commonly prescribed oral antibiotic for paronychia, though it may not always be necessary. The bandage may be changed once or twice a day for the first few days, and soaks in a dilute betadine solution may be beneficial as well.
If ingrown toenails and paronychia are a chronic problem, they can be addressed with one of several more permanent procedures. A podiatrist will typically be the type of doctor that deals with this problem. After the infection resolves, a chemical matricectomy may be performed. This procedure involves using a chemical, such as phenol or sodium hydroxide, to permanently remove a portion or the entire nail matrix. The nail and nail matrix may also be surgically removed. Both are relatively minor procedures, and allow for a quick recovery. The recurrence of ingrown toenails after these surgical procedures is extremely low.
Generally speaking, a paronychia is a minor infection, and is treated as such. It is only in the diabetic or otherwise immunocompromised patient that it becomes an area of greater concern. If not dealt with rapidly, a minor infection can become a more serious, even life-threatening infection.
If you are experiencing pain from an ingrown toenail, show it to your doctor. Even if it is not infected, it should be dealt with in an appropriate manner, to relieve pain, prevent regrowth of the ingrown portion of the nail, and prevent a pending infection. With time, many ingrown toenails will ultimately become infected.
Monday, May 23, 2011
Burning and Tingling in the Feet – Is it Neuropathy?
One of the most common complications of diabetes is the development of peripheral neuropathy. Along with the retina in the eye and the kidney, the nervous system is particularly vulnerable to unregulated glucose levels in the blood. This is because glucose, or free sugar in the blood, is able to freely move in and out of these cells without the use of glucose receptors.
Diabetic neuropathy comes in a variety of forms, depending on which nerves are involved. The sensory, motor, and autonomic (involuntary) nervous systems are all affected in diabetic neuropathy, but the sensory involvement is usually the first to become noticeably symptomatic. This often begins with a burning, tingling, or feeling of numbness in the feet. This may also occur in the hands at the same time. This pattern of distribution is commonly referred to as the “stocking-and-glove” distribution. Many theorize that the longest nerves are the first to be affected by peripheral neuropathy, hence the involvement of the hands and feet first. The pain is generally worse at night or at rest.
While the symptoms of numbness and pain of a burning or tingling nature may be uncomfortable, the later sequalae of peripheral neuropathy is certainly more of concern. Once the sensation in the feet is diminished or absent, the foot becomes prone to injury. This injury may go completely unnoticed, which can lead to an open, infected wound. Ulcerations secondary to diabetic peripheral neuropathy cause enormous amounts of morbidity, and can become complicated by systemic infections.
Signs of motor neuropathy in the diabetic patient include structural changes to the foot due to a loss of intrinsic musculature. This may include hammering of the digits, as well as a noticeable loss of the abductor hallucis, a muscle found on the inside (medial) of the foot near the arch. These changes may be more subtle than the subjective findings of pain due to sensory neuropathy.
Autonomic neuropathy also causes changes to the foot that can be appreciated on physical examination. Findings such as lack of hair growth to the digits, changes to the skin color or texture, changes in warmth, and decreased circulation to the foot can all be signs of autonomic neuropathy in the diabetic patient.
Unfortunately, there is no cure for diabetic neuropathy. The onset and progression of symptoms can be avoided by keeping tight control of blood glucose levels. Avoiding hyperglycemic events will prevent the nerves from being damaged by excessive glucose in the blood. In fact, many diabetics report an increase in pain after eating a carbohydrate-rich meal or if their glucose levels are running high.
Drugs that have been used to treat painful diabetic peripheral neuropathy are targeted at the symptoms rather than at the cause. This includes antidepressants such as amitryptiline or nortriptyline, gabapentin, topical capsaicin, and sedatives and pain relievers such as opiates.
A podiatrist will screen for neuropathy in diabetic patients. This is often a very simple, noninvasive test in the office where the protective sensation in the feet is tested. Further testing may be warranted for borderline cases, but is typically unnecessary. If you are diabetic and are concerned about peripheral neuropathy, have a discussion with your podiatrist or primary doctor today.
Monday, April 25, 2011
Endoscopic Plantar Fasciotomy
One of the most common conditions encountered by the podiatric physician is plantar fasciitis and other forms of heel pain that may present as plantar fasciitis. In fact, one study suggested that up to a third of all Americans will experience this form of heel pain at some point in their adult lives.
The plantar fascia describes a tough band of fibrous material found at the plantar surface of the foot. This structure allows for integrity of the foot, and helps to contain the deeper structures within the foot. It functions to assist in gait and maintain integrity of the musculature of the foot, and is therefore subjected to high levels of stress, particularly in the athlete or in the non-athlete that is on their feet for extended periods of time.
Plantar fasciitis is classically described as heel pain at the bottom of the foot, which may extend into the arch or even into the toes. It is a chronic inflammatory condition, which some suggest is more appropriately described as plantar fasciosis, which indicates the chronic nature of the condition, rather than an acute inflammatory process. Other causes of heel pain include stress fractures of the calcaneus, entrapment of the medial and/or lateral calcaneal nerves, tarsal tunnel syndrome, and certain forms of inflammatory arthritis. It is very possible and quite likely that some cases of heel pain may be multi-factorial, and have elements of more than one of these causes of heel pain.
Symptoms of plantar fasciitis include pain in the heel after long periods of rest, particularly in the morning. This is often referred to as “first-step pain”, and describes the sudden stretching of the plantar fascia band after it is allowed to contract some during rest. The pain may be relieved somewhat as the plantar fascia is “loosened”, but will return with increased activity.
Conservative therapy for plantar fasciitis revolves around exercise and stretching, corticosteroid injections, anti-inflammatory medications, icing, rest, and the use of orthotic devices. Newer advancements in technology have led to ultrasound and shockwave therapy, platelet-rich plasma therapy, and other high-tech therapies.
However, conservative therapy can often fail, and surgery becomes an option. Surgical management is traditionally performed as an open procedure, with a small incision made into the medial foot and a resection of some of the plantar fascia, or a simple release. Historically, the entire plantar fascia was commonly released. However, this was found to destabilize the lateral foot, and would lead to pain in this area. In fact, this complication was often more debilitating than the original plantar fascia pain. This realization led to a more judicious release of the plantar fascia, usually only involving the medial one-third of the structure. This led to much less instability and greater results.
Another historical approach to plantar heel pain was the resection of a bone spur on the calcaneus. For a long time it was believed that this was the source of the plantar fascia pain, and resection would lead to improvement. Research into “heel spurs” as the cause of heel pain would later disprove this as an etiology of the pain. Resection of heel spurs, or infracalcaneal exostoses, is not commonly performed as a result of this information.
With a greater understanding of plantar heel pain, as well as advancements in surgical technique and technologies, the use of endoscopic methods of plantar fascia release became a popular option in the 1990’s. With endoscopic plantar fasciotomy, one or two small incisions are made in the side of the foot, and a small camera is used to visualize this plantar fascia. Then, a specialized blade is inserted and the plantar fascia is released. This minimally invasive technique causes less damage to the surrounding tissues, and can lead to a faster recovery.
Post-operatively, however, a period of non-weight bearing or partial weight bearing is still recommended. With the initial development of endoscopic plantar fasciotomy, the idea of a faster recovery led to a quicker return to normal shoes. However, it was realized that this quick return to normal shoes led to increased instability and recurrence of pain. It is now recommended that the patient remain non-weight bearing in a surgical boot until healing occurs.
The endoscopic plantar fasciotomy remains a popular option for foot and ankle surgeons in the treatment of plantar fasciitis. Advancements since its initial inception make it easier to operate and lead to greater outcomes. Conservative therapy should be initiated and followed for some time before surgical intervention. If you are experiencing heel pain or symptoms of plantar fasciitis, consult your podiatrist for evaluation. Diagnosis can only be made after proper examination and evaluation.
Monday, February 21, 2011
Metatarsus Adductus
A common cause of in-toeing in the pediatric patient is a foot deformity called metatarsus adductus. This is a condition in which the metatarsals, the bones in the foot that connect the toes to the midfoot, are pointed towards the direction of the midline of the body. Metatarsus adductus may be present on it’s own, or may be a component of a more extensive deformity, such as clubfoot. It’s incidence is approximately one in every one thousand live births, which is roughly ten times as common as clubfoot.
The exact cause of metatarsus adductus is not known, though there are several theories of how it develops. An increase in intrauterine pressure and a position in the womb that causes the feet to drift inward is the cause that is most commonly accepted. There also may be a familial pattern of metatarsus adductus, indicating that there may be genetic pre-disposition to the deformity. Conditions that cause an increase in ligament laxity, such as Ehlers-Danlos Syndrome, may also contribute to the development of metatarsus adductus.
The evaluation of metatarsus adductus typically involves clinical evaluation as well as x-rays of the foot to determine the position of the developing bones. Clinically, the toes will be pointed inwards towards the midline of the body. Sometimes only the great toe will be involved, in which case the condition is called metatarsus primus adductus. More commonly, however, all five digits are involved. The outside of the foot, or the lateral side, may show a prominent bump right in the middle of the foot. This is most likely the styloid process at the base of the fifth metatarsal, a very good indicator of metatarsus adductus. There also may be an increased gapping between the first and second toes when the child is standing, another classic finding.
X-rays will often reveal the extent of the deformity. The foot and ankle physician evaluating the patient will measure the angle that the forefoot points away from the midfoot and towards the middle of the body. The higher the angle, the more severe the deformity.
Important factors in determining the treatment of metatarsus adductus are the angle of deviation from the midfoot, the involvement of the midfoot and/or rearfoot in the deformity, and the reducibility of the deformity. Reducibility refers to whether or not the forefoot can be corrected with manipulation.
Conservative therapy is typically employed first, especially in children under the age of two years old. Most commonly conservative therapy involves manipulating the foot into a corrected position, and casting the foot so it stays that way. Depending on the degree of deformity, several rounds of casting may be used. This is referred to as serial casting. Besides casting, a splint such as a Ganley splint may be used as well as special shoes to prevent the deformity from recurring.
Surgical therapy is sometimes necessary to correct the deformity in the older child, or a child that has a more severe deformity. Surgical procedures involve both soft tissue and bone surgery, or a combination of both. Soft tissue procedures may include tendon releases and/or ligament release. These types of procedures will allow the foot to be manipulated more easily so that a corrected position can be attained. Bone work may involve taking small wedges of bone out of either the metatarsals or the midfoot in order to straighten out the foot.
After surgery, the patient is typically casted for a period of no less than 8-12 weeks in order to maintain the corrected position. Special shoes may still be required for some time to prevent the deformity from recurring.
There are a number of other musculoskeletal deformities that may be present in the lower extremity that lead to in-toeing. A thorough evaluation of the legs, knees, and hips is warranted in any child that has significant in-toeing. The incidence or torsional deformities of the tibia and femur is increased in the presence of metatarsus adductus, possibly due to the same reasons that the foot deformity develops in-utero. An increased incidence of hip dysplasia has also been reported by some authors, though other refute this correlation.
Thursday, December 30, 2010
Thromboangiitis Obliterans
Thromboangiitis Obliterans is a rare disease that causes occlusion of the arteries in the hands and feet. It almost always affects men aged 20-40 with a history of cigarettes smoking or other tobacco use. It was first described by Von Winiwarter in 1879 in a patient with the affliction. It was later described by Leo Buerger, who documented and provided a full description of the disease. For this reason, it is commonly referred to as Buerger’s Disease.
The disease is caused by an inflammation of the blood vessels, particularly those of the hands and feet. When the vessels become totally occluded, a lack of blood flow to the affected area occurs. This can cause an immense amount of pain, and can lead to gangrene and ulcerations of the fingertips and/or toes.
In those with thromboangiitis obliterans, symptoms may include cold hands or feet, with the extremity appearing pale, red, or blue. Symptoms most commonly affect two or more extremities, but may also affect only one. There is usually pain in the affected limb, which may range from burning or tingling at rest to acute, severe pain. Symptoms are usually worsened by stress or cold. Thromboangiitis Obliterans is commonly seen in association with Raynaud’s Disease. The incidence is quite low, affecting approximately 6 in 10,000 people.
Treatment for thromboangiitis obliterans revolves around symptoms, as there is no cure for the disease. Increasing blood flow to the area may be achieved with vasodilators such as oral medications or nitroglycerin patches. Adding warmth and gently exercising the area can also increase blood flow.
Prevention of thromboangiitis obliterans is key to treatment. Quitting smoking and the use of tobacco products can prevent occlusions all together in many patients. Removing stress and avoiding the cold can also help.
The most serious complication of thromboangiitis obliterans is gangrene. The lack of blood flow to the hands and/or feet can cause the tissue to become gangrenous and die. If not cared for properly, this tissue can lead to serious infections, and possibly sepsis and death. Therefore, it is essential that thromboangiitis obliterans be cared for aggressively by the treating physician.
Wednesday, October 27, 2010
Surgery for Lateral Ankle Stabilization
Chronic ankle sprains are a problem that plagues many individuals. Once the ligaments of the ankle have been compromised, they are subject to repeat injury. A person with chronic ankle sprains will often report an initial injury, possibly one that was never treated. There is usually constant swelling and pain at the ankle, and a feeling of instability, as if the ankle might give out at any time.
Chronic ankle instability can develop from damage to the nerve endings in the ligaments responsible for proprioception. Proprioception is the body’s ability to know where a particular part lies in space. Repetitive or chronic injury to the ankle ligaments can damage the proprioceptors in the ankle, leading to that feeling of instability. A person with chronic ankle injuries may also have attenuated, stretched out, and weakened ligaments, particularly of the lateral ankle.
Most commonly, the ligament that is damaged is the anterior talo-fibular ligament, or the ATFL. The calcaneofibular ligament (CFL) or posterior talo-fibular ligament (PTFL) may also be involved, as well as the extensor retinaculum, peroneal tendons, or the joints in the area such as the calcaneocuboid, tarso-metatarsal joints, subtalar joint, or the ankle joint itself. In high ankle sprains, the tibiofibular syndesmosis may also be injured.
Conservative care for chronic ankle injury revolves around protecting the ankle with high-top shoes or braces. These devices may work well in some individuals, but fail to offer enough support in others. In particular, high-performance athletes may be candidates for surgical repair of the ligaments if and when conservative therapy fails.
Surgery for lateral ankle instability focuses on reconstructing the lateral ankle and adding stability to the joint. There are a number of different techniques to do this. Most frequently, cases of chronic ankle instability are due to injury of the ATFL, or a combination of the ATFL and CFL. Depending on the extent of the injury, various procedures may serve to reconstruct and/or repair these ligaments.
Several procedures exist that use the peroneus brevis tendon, the extensor retinaculum, or both to reconstruct the ATFL and/or the CFL. These procedures may involve drilling a small hole in the tip of the fibula or the talus, and re-routing the tendon through the holes. When done correctly, this can add significant stability to the ankle joint.
Another technique involves using soft tissue from another part of the body, such as the tensor fascia lata in the hip and thigh, as a graft to reconstruct the ligaments. Cadaveric grafts or synthetic materials may also be used.
Many variables play into the decision-making of the surgeon and patient. The goals of the patient and the surgeon should be clearly communicated, as well as possible complications of the surgery and shortfalls that may exist. Lateral ankle reconstruction may not be an option for some patients, such as those with systemic conditions that may complicate the surgery or postpone healing. A thorough discussion should be had with a foot and ankle surgeon to assess the situation.
Friday, September 3, 2010
What is Gout?
Gout is a form of arthritis, characterized by an acute onset of extreme pain. Gout attacks most commonly occur in the foot and ankle, in particular at the first metatarsophalangeal joint, the joint that connects the great toe to the foot. Gout also appears in the ankle, and can theoretically occur in any joint of the foot.
During an acute attack, the affected joint will appear red and swollen, and it will be hot to touch. It will also be extremely painful to touch. The simple touch of a bed sheet or even a slight breeze can cause an immense amount of pain. Evaluation by a doctor will be used to rule out other possibilities such as a fracture, infection, or other forms of arthritis. X-rays may be taken to visualize the effected joint as well. There are generally not any changes seen on x-ray with the first gout attack, but distinct changes may be seen with repetitive attacks. These changes include bony erosions seen around the joint, with the appearance of bone that has been chewed away. This is referred to as Martel’s sign.
An excess of uric acid in the body causes a gout attack. Uric acid is a byproduct of many foods; in particular it found in high quantity in red meats, lobster, and beer. Because of its association with overindulgence of rich foods, it has been historically referred to as “the disease of kings”. The high volume of uric acid crystallizes at the level of the joints, causing a tophus to form. The crystallization most commonly happens overnight. Some believe that this is due to a drop in body temperature, particularly in the feet, while sleeping.
A high level of uric acid in the body is a condition known as hyperuricemia. The excessive uric acid may come from several different sources. It may be dietary, as in the overconsumption of red meat, beer, and seafood. Hyperuricemia may also be associated with diabetes mellitus, hypertension, psoriasis, or congenital conditions such as Lesch-Nyhan syndrome. Excessive uric acid levels can also be caused by the use of some diuretics, particularly during their early use.
The treatment of gout is twofold; it must address both the acute painful phase as well as controlling the hyperuricemia. Initially, patients may be given colchicine or indomethacin to alleviate pain. After the acute attack has subsided, the underlying hyperuricemia may be addressed with allopurinol a drug that blocks the enzyme that creates uric acid in the body.